

Ratnadeep Debnath
rtnpro@indifex.com

 Testing your Django App

Why test?
● Check if your app behaves as it is supposed

to
● Refactoring code does not break existing

app's behaviour

Django test frameworks

● Doctests
● Unit tests

Doctests

def my_func(a_list, idx):
 """
 >>> a = ['larry', 'curly', 'moe']
 >>> my_func(a, 0)
 'larry'
 >>> my_func(a, 1)
 'curly'
 """
 return a_list[idx]

Tests that are embedded in your functions' docstrings and are written
in a way that emulates a session of the Python interactive interpreter

Unit tests
Unit testing is a method by which individual units of source
code are tested to determine if they are fit for use

import unittest

class MyFuncTestCase(unittest.TestCase):
 def testBasic(self):
 a = ['larry', 'curly', 'moe']
 self.assertEqual(my_func(a, 0), 'larry')
 self.assertEqual(my_func(a, 1), 'curly')

Benefits of Unit tests

● Facilitates change
● Simplifies Integration
● Documentation
● Design

Writing unit tests
● Django's unit tests use a Python standard library module: unittest.

This module defines tests in class-based approach.

from django.utils import unittest

● Django test runner looks for unit tests in two places:
● models.py
● tests.py, in the same directory as models.py

The test runner looks for any subclass of unittest.TestCase in this
module.

Writing unit tests
from django.test import TestCase
from django.test.client import Client
from posts.models import Post

class TestPosts(TestCase):
 def setUp(self):
 self.post = Post.objects.create(title='foo', body='foo')

 def test_views(self):
 self.assertEqual(self.post.title, 'foo')

 self.assertEqual(self.post.body, 'foo')

Running tests
● $./manage.py test
● $./manage.py test posts
● $./manage.py test posts.TestPosts
● $./manage.py test posts.TestPosts.test_views

The Test Client
● A python class that acts as a dummy web browser
● Allows testing your views
● Interact with your Django app programatically

Let's run tests

The Test Client

● A way to build tests of the full stack
● Acts more or less like a browser
● Stateful
● Default instance on django.test.TestCase
● Can be instantiated outside test framework

The test client isn't

● A live browser test framework
● Selenium
● Twill
● Windmill

Why is it different?

● TestClient can't do some things
● No JavaScript
● DOM validation or control

● Can do some things that browsers can't

Returns a response

● response.status_code
● response.content
● response.cookies
● response['Content-Disposition']

... and a little more

● response.template
● The template(s) used in rendering

● response.context
● The context objects used in rendering
● response.context['foo']

...and it maintains state

● self.cookies
● self.session

Login/Logout

from django.test.client import Client
c = Client()
c.login(username='foo',

Password='password')

c.logout()

Get a page

from django.test.client import Client

c = Client()

c.get('/foo/')

c.get('/foo/?page=bar')

c.get('/foo/', {'page': 'bar'})

Post a page

from django.test.client import Client

c = Client()

c.post('/foo/')

c.post('/foo/?bar=3')

c.post('/foo/', data={'bar': 3})

c.get('/foo/?whiz=4', data={'bar':3})

Rest of HTTP

c.put('/foo/')

c.options('/foo/')

c.head('/foo/')

c.delete('/foo/')

A common problem

r = self.client.get('/foo')
self.assertEquals(r.status_code, 200)

FAIL Assertion Error: 301 != 200

The fix
r = self.client.get('/foo', follow=True)

self.assertEquals(r.status_code, 200)

response.redirect_chain
 -- links visited before a non-redirect was found

You can do more

● Extra Headers
c = TestClient(HTTP_HOST='foo.com')

c.get('/foo/', HTTP_HOST='foo.com')

● Files
f = open('text.txt')

c.post('/foo/',

content_type=MULTIPART_CONTENT),
data = {'file': f})

f.close()

Assertions

● assertContains()
● assertNotContains()
● assertFormError()
● assertTemplateUser()
● assertTemplateNotUsed()
● assertRedirects()

Do's and Don'ts

● Don't rely on assertContains
● Assertions on template content are weak

● Test at the source
● Is the context right?
● Are the forms correct?

● Django's templates make this possible!

When to use TestClient

● When you need to test the full stack
● Interaction of view and middleware

● Great for testing idempotency

Let's run some tests again

Coverage

● Why do I need coverage tests?
An small example:
● You write some new code :-)
● Does it really work as expected? :-(
● Now, you write tests for it :-)
● Does your test really test your code? :-(

This is where coverage comes to the rescue :D

What is coverage
● A tool for measuring code coverage of Python programs.

● It monitors your program, noting which parts of the code have

been executed,

● It then analyzes the source to identify code that could have been
executed but was not.

● Coverage measurement is typically used to gauge the effectiveness
of tests. It can show which parts of your code are being exercised
by tests, and which are not.

Who is behind Coverage

Ned Batchelder

Install Coverage

● easy_install coverage
● pip install coverage

How to use Coverage?
● Use coverage to run your program and gather data

● $ coverage -x my_program.py arg1 arg2
● Use coverage to report on the results

$ coverage -rm

Name Stmts Miss Cover Missing

my_program 20 4 80% 33-35, 39

my_other_module 56 6 89% 17-23

TOTAL 76 10 87%

How to use Coverage
● Generate better reports for presentation, say html:

● coverage html -d <dir>
● Erase existing coverage data

● coverage -e

Let's use Coverage

Questions?

Useful links
● https://docs.djangoproject.com/en/dev/topics/testing/

● http://nedbatchelder.com/code/coverage/

https://docs.djangoproject.com/en/dev/topics/testing/
http://nedbatchelder.com/code/coverage/

Contact

Ratnadeep Debnath
Email: rtnpro@indifex.com
IRC: rtnpro
Blog: ratnadeepdebnath.wordpress.com

mailto:rtnpro@indifex.com
http://ratnadeepdebnath.wordpress.com/

Thank You :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

